Towards CRISPR/Cas crops - bringing together genomics and genome editing.
نویسندگان
چکیده
Contents 682 I. 682 II. 683 III. 684 IV. 685 V. 685 VI. 688 VII. 690 VIII. 694 694 References 694 SUMMARY: With the rapid increase in the global population and the impact of climate change on agriculture, there is a need for crops with higher yields and greater tolerance to abiotic stress. However, traditional crop improvement via genetic recombination or random mutagenesis is a laborious process and cannot keep pace with increasing crop demand. Genome editing technologies such as clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (CRISPR/Cas) allow targeted modification of almost any crop genome sequence to generate novel variation and accelerate breeding efforts. We expect a gradual shift in crop improvement away from traditional breeding towards cycles of targeted genome editing. Crop improvement using genome editing is not constrained by limited existing variation or the requirement to select alleles over multiple breeding generations. However, current applications of crop genome editing are limited by the lack of complete reference genomes, the sparse knowledge of potential modification targets, and the unclear legal status of edited crops. We argue that overcoming technical and social barriers to the application of genome editing will allow this technology to produce a new generation of high-yielding, climate ready crops.
منابع مشابه
Harnessing CRISPR-Cas systems for bacterial genome editing.
Manipulation of genomic sequences facilitates the identification and characterization of key genetic determinants in the investigation of biological processes. Genome editing via clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) constitutes a next-generation method for programmable and high-throughput functional genomics. CRISPR-Cas systems are readily r...
متن کاملThe new genomic editing system (CRISPR)
Over the past decades, progression in genetic element manipulation, and consequently, the treatment of diseases has been remarkable. It is worth noting that these genetic manipulations perform at different levels, including DNA and RNA. The earlier genomic editing techniques, including MN, ZFN , TALEN , performing their functions by creating double-stranded breaks (DSBs), and after breakage, th...
متن کاملGenome Editing and Its Applications in Model Organisms
Technological advances are important for innovative biological research. Development of molecular tools for DNA manipulation, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly-interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas), has revolutionized genome editing. These approaches can be used to develop p...
متن کاملThe Power of CRISPR-Cas9-Induced Genome Editing to Speed Up Plant Breeding
Genome editing with engineered nucleases enabling site-directed sequence modifications bears a great potential for advanced plant breeding and crop protection. Remarkably, the RNA-guided endonuclease technology (RGEN) based on the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) is an extremely powerful and easy tool that revolutionizes b...
متن کاملHarnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium
Application of CRISPR-Cas9 systems has revolutionized genome editing across all domains of life. Here we report implementation of the heterologous Type II CRISPR-Cas9 system in Clostridium pasteurianum for markerless genome editing. Since 74% of species harbor CRISPR-Cas loci in Clostridium, we also explored the prospect of co-opting host-encoded CRISPR-Cas machinery for genome editing. Motivat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The New phytologist
دوره 216 3 شماره
صفحات -
تاریخ انتشار 2017